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Abstract—Land cover classification analysis from satellite im-
agery is important for monitoring change in ecosystems and
urban growth over time. However, the land cover classifications
that are widely available in the United States are generated
at a low spatial and temporal resolution, so that the spatial
distribution between vegetation and urban areas in the wildland
urban interface is difficult to measure. High spatial and temporal
resolution analysis is essential for understanding and managing
changing environments in these regions. This paper describes an
end to end satellite data ingestion and analysis pipeline using
deep learning on high resolution satellite imagery for generating
pixel-based land cover classification.

Index Terms—satellite image analysis, deep learning, land data
products, CNNs, U-Nets

I. INTRODUCTION

Understanding land cover classification has applications in

many areas including planning for fire hazards and response.

Understanding land cover at the wildland urban interface (WUI)

is especially important because the proximity of structures to

different vegetation significantly affects how a fire will burn in

that area. There are many data land cover products that classify

vegetation in the United States and others that classify urban

(or impervious) surfaces, but none investigate vegetation at the

urban interface with the intention to understand how the WUI

is changing.

WIFIRE [1], [2] is an integrated system for wildfire analysis,

which integrates networked observations such as heterogeneous

satellite data and real-time remote sensing data, with computa-

tional techniques in signal processing, visualization, modeling,

and data assimilation to provide a scalable method to monitor

such phenomena as weather patterns that can help predict a

wildfire’s rate of spread. The amount, size and moisture content

of surface fuels determine how fast a fire spreads, how hot it

burns and how high its flames reach. Accurate and up-to-date

fuel maps are critical for accurately modeling wildfire rate of

spread and potential burn areas. Our goal is to create a machine

learning method for automating a burnability or “fuel” model

from satellite imagery. However, in order to do that, we must
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first refine a technique for land cover classification. Land cover

determines a type of vegetation or density of urban land. Fuel

is determined from additional attributes that cannot necessarily

be determined from satellites such as canopy height, percent

of live versus dead vegetation, and the burn history of that

area. Therefore our goal for this paper is to create accurate

land cover as a step towards identifying fuels.

New advances in satellite imagery now provide data at

an unprecedented rate and resolution. This remote sensing

data combined with data science techniques provide a unique

opportunity to monitor natural resource and development

activities on an ongoing basis.

Deep learning on satellite imagery represents a number

of typical big data challenges related to the data volume

and computational scale required to analyze and interpret.

Deep learning models are composed of many layers of

interconnected processing units, allowing for the learning of

data representations at multiple and increasingly complex and

task-specific levels of abstraction, leading to automatic feature

learning for prediction tasks across many domains, including

image analysis. In this paper, we present a data-driven approach

to measure the WUI using deep learning on satellite imagery at

high spatial and temporal resolution for a better understanding

of fire hazard and response needs.

Based on this motivation and our prior work [3], the new

contributions of this paper are as follows:

(i) An end to end satellite data ingestion and analysis pipeline

using deep learning;

(ii) Land cover maps generated by the presented analytical

pipeline that defines vegetation and urban areas at the WUI

on a pixel by pixel basis; and

(iii) A comparison of the experimental results from using

convolutional neural network (CNN) and U-Net models for

detecting land cover classes.

The rest of this paper is organized as follows: Section

II reviews related work, Section III discusses our data and

methods, and Section IV describes our results. Finally, we

conclude and discuss future work in Section V.

II. RELATED WORK

A. Vegetation Maps using Satellite Imagery

There are several existing map products derived from satellite

imagery made available for analyzing fire. These free products
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are derived from Landsat [4] satellite imagery, which are

30m/pixel resolution.

LANDFIRE [5], the Landscape Fire and Resource Manage-

ment Planning Tools, provides vegetation and fire fuel data

for resource planning and analysis every two years by using

a workflow that combines Landsat imagery, vegetation plots

throughout the United States, and ecological expertise to create

the seamless product across the US. The result is a map that

describes ecosystem-scale vegetation types and urban areas.

The North American Forest Dynamics (NAFD) [6], managed

by NASA, is intended to show forest disturbance over the

conterminous United States using Landsat data between 1986-

2010. This product provides annual maps for these dates that

describe whether pixel is water, forest, not forest, and how

much that pixel has been disturbed from the previous year.

National Land Cover Database (NLCD) [7], housed by the

Multi-Resolution Land Characteristics Consortium, classifies

the conterminous US into 16 general land cover classifications

into general vegetation types and urban densities, for the

purpose of measuring change from 2001-2011.

Forest Inventory Analysis (FIA) [8], managed by the US

Forest Service, creates maps that quantify forest disturbance

for carbon accounting across the conterminous United States.

The Hansen Global Maps of Forest Cover Change [9]

quantifies globally the growth and loss of forest cover between

2000-2012 using the help of the Google Earth Engine.

While all of these efforts focus on forests and forest health

with a specific focus on forest disturbance, they do not address

the diversity and challenges of vegetation or fuels at the edges

or at some times, insides, of urban areas.

B. Deep Learning for Image Analysis

Convolutional neural networks (CNNs), a particular type

of deep learning model, are extensively used and are now

the de facto approach for several image tasks such as image

classification and object detection, as can be seen from the

outcomes of the highly influential ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [10]. CNN performance on

the ImageNet database [11] has surpassed human performance

on a standard image classification task [12].

Several groups have applied CNNs to land cover classifica-

tion. For example, there are studies to classify crop types using

medium-resolution satellite imagery [13], analyze urban land

use patterns from aerial images [14], classify land cover from

geo-tagged field photos [15], and study urban environment

patterns from satellite images [16].

Another type of deep learning model known as U-Net have

shown to be very effective at image segmentation in biomedical

and medical applications [17]. Recently, U-Nets have also been

applied to other domains, such as scene segmentation (e.g., [18])

and satellite image analysis (e.g., [19]).

Our work applies deep learning to satellite images to study

land cover classification. Our analysis pipeline makes use of

up-to-date, high-resolution satellite imagery, and classifies land

cover types at the pixel level rather than the image level in order

Fig. 1: Study area from Escondido, California.

to provide the granularity necessary to distinguish between

urban materials from vegetation, and where they intermix.

III. APPROACH

A. Data Acquisition and Preprocessing

For this study, we picked an area in Southern California.

The study area is displayed in Figure 1, and exists on the

southwestern border of Escondido, California, precisely on the

WUI where fire hazard is high. We chose this location because

it contains a diversity of Southern Californian vegetation, varied

topography, water bodies, and a spectrum of dense to sparse

urban development. The Cocos Fire occurred in this study

area in May 2014 as well, which provides the opportunity to

test deep learning techniques on recently burned vegetation.

The left-hand image shows the entire study extent. The right

hand image of Figure 1 shows the region that was chosen

for hand-labeling. The deep learning training region is in the

the lower right box, and the test area as a combination of the

northern and western image strips. These training and testing

areas were defined to maintain as similar a distribution of land

cover types between the train and test areas as possible.

As mentioned in Section II, existing vegetation products

derived from satellite are highly variable, possibly due to

the low spatial resolution of Landsat and the infrequent rate

of publication of these products. LANDFIRE publishes a

vegetation and fuels map for the continuous United States

every two years. At the time of this writing, Planet imagery

[20] is collected almost daily, at 3-5m/pixel. While it has fewer

spectral bands, the spatial resolution increases the accuracy

of what we identify. Additionally, as more frequent imagery

is made available with satellites like those from Planet, this

pipeline can be used to monitor and account for rapid land cover

change due to environmental and social events. Our approach

tests the use of the Planet satellite data on a Landsat-based

workflow. As we are testing our results against Landsat-derived

products, we aggregate the Planet data to the 30m resolution

of these Landsat-derived products.

We collected imagery from Landsat (30m) and Planet’s Plan-

etscope (5m) sensors over the study area, each collected from

the same month and each image cloud free. We preprocessed

each scene by projecting each to the same map projection.

We then chose a subset of the Escondido area to hand label

each pixel. We clipped each scene to the same extent of this

subset area, then tiled the imagery using commands from the
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Fig. 2: End to end satellite data ingestion and analysis pipeline

using deep learning.

Geospatial Data Abstraction Library (GDAL) [21]. Each tile

generated had the same extent of 30m x 30m. Landsat tiles

were one pixel, and the Planet tiles were 6x6 pixels.

We then collected the NLCD Land Cover map for the same

area for 2011, the most recently published year. The map’s

resolution is 30m/pixel. These first two steps of our satellite

image processing pipeline are illustrated in Figure 2 as Data
Acquisition and Data Preprocessing.

B. Label Generation

One of the greatest challenges was using the land cover

datasets derived from satellite as labels for machine learning as

none of the existing products have great accuracy. The NLCD

labels have inconsistencies, because it was generated from 2011

data and is a generalized product for the conterminous US;

thus, we could not use this data for training labels. Instead,

we chose to hand label the entire region, and use NLCD land

cover categories as a guideline. This is indicated as the Hand
Labeling step in Figure 2.

There were approximately one million pixels in the study

area. To speed the process of labeling, we performed clustering

of the Planet pixels into 20 clusters. We reviewed the cluster to

find a predominant land cover type, and then hand labeled the

pixels within that cluster that deviated from the predominant

land cover type. We created the hand labels by converting the

cluster image centers into a point Shapefile and then manually

editing groups of points or individual points and labeling them

in QGIS and ArcGIS. We used Worldview 3 (0.5m) imagery

as a basemap to validate our hand labels. After labeling the 5m

Planet data, we pooled the 6x6 pixels in each tile to choose a

predominant land cover type for that 30m resolution tile. See

Figure 3 for a comparison of the original NLCD labels, 5m

hand labels, and pooled 30m hand labels for the area that we

hand-labeled.

The discrepancy between our labels and the NLCD labels

can be explained by the labeling approach. The NLCD map

identifies a pixel classification by the dominant land cover

type in that 30m pixel. Note the NLCD image on the right of

Figure 3. The eastern half of the image has a lot of developed

open space and developed low intensity areas, colored in pink.

In our approach, we labeled each 5m pixel in Planet imagery,

thus explicitly identifying the vegetation between buildings

and neighborhoods, and aggregated the 5m labels to create

30m labels using a simple majority rule. We explicitly labeled

regions that are vegetated as such, even if the vegetation is

there because it was put there in a suburban context. Therefore,

there are more details identifiable in our layers, and more

explicit distribution of the vegetation versus the NLCD labels.

To further show the need for refined labels, some of the NLCD

labels in Figure 3 are incorrect. Note the reservoir in the

southern center part of the scene. The center of the reservoir

is classified as partly developed.

C. Deep Learning Models

We use CNNs and U-Nets, two types of deep learning models

that have been successfully applied to image data.

A CNN is made up of different types of layers [22]–[24]. A

CNN model used for classification typically consists of several

blocks of convolutional layers followed by a pooling layer.

Batch normalization and dropout layers can also be added. The

last pooling layer then feeds into a fully connected layer where

class scores are computed for the final classification.

A U-Net [17] is a type of convolutional auto-encoder

with an encoding path that performs feature extraction with

convolutional and pooling layers, followed by a decoding path
that performs segmentation with upsampling and convolutional

layers. Skip connections concatenate features from an encoding

layer to the corresponding decoding layer, allowing for higher-

resolution features to be combined with contextual information

in generating output for the next layer in the decoding path.

Preparing the data for the models, and training and testing

them are indicated as Data Conditioning and Augmentation
and Modeling in Figure 2, and are detailed in the next section.

IV. EXPERIMENTAL SETUP AND RESULTS

We built a CNN model and a U-Net model to predict the

hand-labeled categories. The train area with 25,685 pixels was

used to train the models, and both top and left test areas (with

13,547 pixels together) were used to test generalization.

A. CNN Model

For the CNN, we initially experimented with pre-trained

CNNs and transfer learning. The use of CNNs trained on

ImageNet data for transfer learning to other image data has

proven to be very successful [25], [26]. We tested the use

of transfer learning to our hand-labeled categories with the

ResNet-50 [27] and VGG-19 [28] models. Results with the

pre-trained models were poor, however, since the input images,

at 6x6 pixels, had to be resized eight times for the VGG-19

and 36 times for the ResNet-50.

We then proceeded to build our own custom CNN. After

some experimentation, we decided on the architecture in

Table I.

We also tested different combinations of spectral bands

in the input images. In addition to the five bands native to

the Planet data (Section III-A), we also used these additional

derived bands: EVI (Enhanced Vegetation Index), CCCI

(Canopy Chlorophyll Content Index), and SAVI (Soil Adjusted

Vegetation Index). These are vegetation indices commonly used

in remote sensing applications with natural materials [29]. Our
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Fig. 3: Comparison of 5m hand labels, pooled 30m hand labels, and original NLCD labels for the hand-labeled area.

TABLE I: Custom CNN Architecture

Layer Parameters
Convolutional 32-3x3 filters, ReLU
Convolutional 32-3x3 filters, ReLU
Pooling 32-2x2 filters, Max
Batch Normalization
Convolutional 64-3x3 filters, ReLU
Pooling 64-2x2 filters, Max
Dropout 0.25 rate
Fully Connected 256 outputs, ReLU
Dropout 0.25 rate
Fully Connected 10 outputs, ReLU

tests indicated that using the five Planet bands along with EVI

provided best results; thus, we used these six bands for all

CNN experiments.

Image rotation was not used since only marginal prediction

improvement was seen in preliminary experiments. The train

area was split into train and validation datasets with a 80:20

ratio using stratified sampling. The CNN was trained with

categorical cross entropy as the loss function, and a batch size

of 128 using the SGD optimizer [30]. The best model was

selected based on the lowest validation error.

B. U-Net Model

Preliminary testing indicated that multinomial classification

with the U-Net yielded poor performance. We therefore decided

to build a set of U-Net models instead, with a separate model

trained on binary classification for each land cover category.

Each U-Net was trained to perform image segmentation for

a specific land cover class; that is, the model was trained to

output a binary mask with one for pixels belonging to that

class, and zero otherwise. The general configuration of the

various U-Net models was inspired by the winner of the Dstl

Satellite Imagery Competition [19], and is described in Table II.

The convolutional layers used the exponential linear unit (ELU)

activation function, which is a modified version of ReLU that

has been shown to speed up learning in deep networks [31].

Since each U-Net was trained separately and on a different

class, we experimented with different numbers of layers and

numbers of feature maps for each model. For a U-Net with

three layers, the feature-map-per-layer configuration was 8-16-

32, meaning that the first, second, and third layer had 8, 16, and

32 feature maps, respectively. We also tested four layers with

TABLE II: Baseline U-Net Architecture

Contracting Path
Layer Parameters
Convolutional 3x3 filters
Batch Normalization
Dropout 0.1 rate
Convolutional 3x3 filters
Batch Normalization
Pooling 2x2 filters, Max

Expanding Path
Layer Parameters
Transposed Convolutional 2x2 filters
Skip connections
Convolutional 3x3 filters
Batch Normalization
Droupout 0.1 rate
Convolutional 3x3 filters
Batch Normalization

8-16-32-64 feature maps, and five layers with 8-16-32-64-128

feature maps.

Additionally, as with the CNN, we tested different combi-

nations of spectral bands to use for each U-Net model. From

these preliminary tests with model depth and spectral bands,

the final U-Net model architecture was selected for each class

as listed in Table III. Here, ‘PL-5’ indicates the original five

Planet bands; ‘RGB’ indicates red, green, and blue bands; and

‘Derived’ indicates derived bands EVI, CCCI, and SAVI.

TABLE III: Architectures of U-Net Models

Category # Layers Spectral Bands
11-Water 3 PL-5
21-Dev Open Space 4 PL-5
22-Dev Low Intensity 3 RGB
23-Dev Medium Intensity 3 Derived
24-Dev High Intensity 3 PL-5
31-Barren Land 4 PL-5
43-Mixed Forest 4 PL-5
52-Shrub/Scrub 3 Derived
71-Grassland/Herbaceous 3 PL-5
82-Cultivated Crops 4 Derived

Preliminary analysis also indicated that image rotation helped

with segmentation results, so data was augmented using rotation

of 0, 90, 180, and 270 degrees. Image tiles of size 48x48 pixels

with a padding of 16 were used as input to each U-Net. Since

these are Planet images, the spatial resolution is 5m.

Each model was trained to output the binary mask of size
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48x48 pixels for a specific land cover class. To combine predic-

tions from all binary U-Net models for the final prediction, a

simple max operation was performed on all U-Net predictions

to determine the class for a pixel. In addition, to compare to

the original Landsat land cover labels and also to the CNN

output, the 5m predictions in the binary mask were pooled,

using simple majority, to create a 30m binary mask.

The dice loss was used as the loss function to train the

U-Net models. The dice loss is based on the dice similarity

coefficient (DSC) [32], and is defined as follows:

DSC =
2∗ ∣∣Ytrue

⋂
Ypred

∣
∣

|Ytrue|+
∣
∣Ypred

∣
∣

DSC Loss = 1−DSC

where Ytrue are the true labels, Ypred are the predictions for

the land cover categories, and
⋂

is the set intersection. The

dice coefficient compares the similarity of two datasets, and is

commonly used as a performance metric in image segmentation.

The train area was split into train and validation datasets

with a 80:20 ratio. The models were trained with a batch size

of 128 and the Nesterov Adam optimizer [30], and the best

model was selected based on the lowest validation error.

C. System Setup

Our deep learning models were trained and tested using

the Cognitive Hardware And Software Ecosystem Community

Infrastructure (CHASE-CI), which is managed by the con-

tainer orchestration system Kubernetes [33]. Our environment

consisted of Ubuntu containers running interactive Jupyter

notebooks. We used the Keras library [34] with the TensorFlow

[35] backend to implement, train, and evaluate our models.

We also used GDAL for processing the satellite imagery, and

Spark [36] for clustering.

D. Experimental Results

Results of classifying the land cover categories for the CNN

and U-Net are detailed in Figure 4 and Tables IV and V.

Fig. 4: Confusion matrices for CNN (left) and U-Net (right)

on combined test areas

Breaking down results on individual land cover categories,

we observed the following:

• Water was classified well by both models. This is not

surprising since Water pixels have very different visible

characteristics from the other categories.

TABLE IV: CNN Performance Metrics

Category Precision Recall F1-Score Support
11-Water 0.94 0.79 0.86 19
21-Dev Open Space 0.67 0.72 0.69 911
22-Dev Low Intensity 0.39 0.20 0.26 122
23-Dev Medium Intensity 0.19 0.57 0.29 47
24-Dev High Intensity 0.71 0.25 0.37 201
31-Barren Land 0.56 0.55 0.55 730
43-Mixed Forest 0.68 0.65 0.66 682
52-Shrub/Scrub 0.95 0.96 0.95 10,474
71-Grassland/Herbaceous 0.43 0.47 0.45 305
82-Cultivated Crops 0.00 0.00 0.00 83
Weighted Average/Total 0.87 0.87 0.87 13,574

TABLE V: U-Net Performance Metrics

Category Precision Recall F1-Score Support
11-Water 0.94 0.79 0.86 19
21-Dev Open Space 0.70 0.72 0.71 911
22-Dev Low Intensity 0.30 0.43 0.35 122
23-Dev Medium Intensity 0.34 0.47 0.39 47
24-Dev High Intensity 0.62 0.31 0.42 201
31-Barren Land 0.45 0.50 0.48 730
43-Mixed Forest 0.59 0.63 0.61 682
52-Shrub/Scrub 0.96 0.94 0.95 10,474
71-Grassland/Herbaceous 0.33 0.58 0.42 305
82-Cultivated Crops 0.00 0.00 0.00 83
Weighted Average/Total 0.86 0.85 0.86 13,574

• The F1-score was highest for Shrub in both models. This

was the most abundant category, so the models saw plenty

of examples of Shrub during training. Other vegetation

types (e.g., Mixed Forest) were misclassified as Shrub,

however. This is likely due to the similarity in appearance

in these categories as well as the abundance of Shrub

samples and their proximity to other vegetation types.

• The Developed-Low/Med/High categories had relatively

low F1-scores and were often misclassified as Developed-

Open Space. These categories look very similar and are

physically close together, and can be easily confused even

with the human eye. There were also very few samples

of each category in the training set, less that 4% each.

• Neither model was able to correctly classify Cultivated

Crops. This was due to the fact that there were only

7 samples of this category, out of the total 18,496 train

samples. It is interesting to note that the CNN misclassified

Cultivated Crops mostly as a single category, whereas the

U-Net’s misclassifications were spread out over several

categories. This may be because the CNN was trained on

multiclass classification with softmax, forcing it to choose

a single category, while the U-Net models were trained on

binary classification, which can allow several models to

produce similar classification scores on difficult classes.

In general, performance results of the CNN and U-Net were

very similar, as seen by the F1-scores in Figure 5. The CNN

performed better than the U-Net on some categories, notably

Barren Land, Mixed Forest, and Grassland, while the U-Net

performed better on the Developed categories. Overall, however,

there was no significant difference in performance, as can also

be seen in Figure 4 and Tables IV and V.

Figure 6 shows how the CNN and U-Net predictions compare
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Fig. 5: CNN vs. U-Net F1-scores on combined test areas

to the true hand labels for the top test area. The brown pixels

seen in the Hand Labels image are Cultivated Crops, which is

the category that both models were not able to identify due

to the small number of training samples for this class. Thus,

there are Cultivated Crops pixels in the NLCD image and none

in the CNN or U-Net results. The extra red pixels seen in the

CNN Predictions image as compared to the Hand Labels image

in the middle right of the image mark the misclassifications by

the CNN of Developed Low Intensity to Developed Medium

Intensity, which is also indicated in the CNN confusion matrix

in Figure 4. The light yellow and gray pixels to the right of the

brown pixels represent Grassland and Barren Land, respectively.

It can be seen that the CNN’s predictions more closely match

the hand labels here, which also agrees with results in Figure 5.

(a) 30m Hand Labels

(b) NLCD Labels

(c) CNN Predictions

(d) U-Net Predictions

Fig. 6: Comparison of 30m hand labels, NLCD labels, CNN

predictions, and U-Net predictions for top test area

We applied the CNN and U-Net models to the entire study

area. That is, we used each model to predict land cover

categories for the entire original area described in Section III.

The results are shown in Figure 7 along with the original NLCD

labels for this area. As can be seen, category predictions for

the CNN and U-Net are very similar. Further, it is important

to note that these predictions refine the NLCD labels to a

more realistic picture of what is actually on the ground. This

observation validates the predictive accuracy of our models

and indicates that they can be used to generate target labels

for other, larger areas.

V. CONCLUSIONS AND FUTURE WORK

This paper presents an approach using deep learning to

generate land cover maps from satellite imagery. Our approach

is unique in that it applies a pixel-based approach to high

resolution imagery to classify land cover. Our goal is to

process land classifications that better depict vegetation types

in the WUI, where land cover changes rapidly, and where

the location of interspersed vegetation and homes are critical

for understanding fire behavior. The results presented in this

paper indicate that our classifications would do much better

at representing the distribution of vegetation than the NLCD

model in this part of Escondido, California.

As a part of future work to improve the prediction perfor-

mance of the models we plan to investigate the use of more

data augmentation techniques such as shift and zoom. This

will add more variability to the training data and enable the

models to be more robust to slight changes in the input image.

Additionally, many of the smaller classes yielded worse results

than larger classes, suggesting that addressing class imbalance

may lead to improved classification performance. Incorporating

other spectral bands, e.g., infrared and short-wave infrared,

will provide additional input information to the models, and

should also help to improve performance. These bands, with

longer wavelengths than visible light, can help to separate

vegetation from non-vegetation materials as well as different

types of urban materials such as concrete and tile to help

further distinguish between the Developed categories.

Our models can now be used to automate the process

of labeling pixels in other areas with similar land cover.

To improve the accuracy of the current models, we can

examine predictions that have low scores or small differences

between the top N scores, which indicate predictions with

low confidence, and re-label them as necessary. This can be

considered a type of active learning to selectively choose

samples to guide training. The new labels can then be used to

refine existing models to generate more accurate predictions,

which can be used to fully automate the labeling process.

Since hand labeling is a time-consuming, tedious, and error-

prone process, the ability to use our models to automate the

labeling process adds scalability and accuracy to our analytics

pipeline. This is essential as we proceed with applying our

approach to larger and more diverse areas.
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